
1 INTRODUCTION 2

A description of ISIS can be found in [7]. In this paper we describe a fundamental
element of a new system called HORUS1 being built at Cornell. HORUS has
evolved from ISIS after much experience with building practical fault-tolerant
distributed systems.

This work was motivated by a trend in the use of ISIS process groups that has
become apparent over the last eight years. The process group paradigm is popular
with ISIS applications programmers; almost every major application written using
ISIS makes extensive use of process groups. In their original design, process
groups were intended as a coarse grain transport mechanism for communicating
with multiple processes. Process groups were used to represent a replicated service.
However, the paradigm has proven popular for more fine grain uses. Over the last
few years applications written using ISIS have used process groups to represent
objects rather than services. This trend has impacted the original design in several
ways and has lead us to focus our attention on providing light-weight process
groups.

The architecture of HORUS was influenced by microkernel design concepts,
in which several light-weight mechanisms are provided in user space. The most

obvious of these is the light-weight process or thread abstraction[8, 15]. Another
well-known, older abstraction is memory allocation. These abstractions not only
allow easier resource management by sharing most of a core environment, but also
provide a portable interface across different environments.

The basic idea behind the light-weight process group (LWG) abstraction is
that many LWGs are mapped to a single core group (or set of core groups) as
implemented by the kernel of HORUS. Thus, these LWGs share the same security
environment (much like threads share the same address space), and the same
failure model, while their messages are multiplexed over a single core group
transport. The benefit of this approach is that membership changes to the core group
automatically affect large numbers of LWGs, amortizing the cost of maintaining
membership information over what the application considers a large number of
independent groups. The ISIS system lacks such a facility, forcing many application
programmers to develop equivalent mechanisms.

We have built a prototype of LWGs on top of ISIS V3.0.6 and the initial results
show significant improvements in performance. In particular, the LWG subsystem
allows LWGs to share the same failure detection protocol execution thereby re-
sulting in faster reaction to member failures and reduced network load. Execution
times for typical group operations are also improved: the initial prototype has a
speed-up factor of nine for the group create operation (the resulting speed is about

SIn Egyptian mythology, HORUS is the son of ISIS.

2 TRENDS IN THE USE OF PROCESS GROUPS 3

30 ms), and even higher speed-ups for group joins and leaves.
To motivate the problem, we present several examples of how fine grain process

groups help solve problems present in distributed applications. We then briefly
present the architecture of the HORUS system with particular attention to the light-
weight group subsystem. We follow this with a discussion of the key aspects of
light-weight process groups and present the basic portions of an interface to our
subsystem. We conclude with some initial performance results.

2 Trends in the use of Process Groups

In this section we look at the use of ISIS process groups in three major applications
written on top of the ISIS system. By looking at these and other applications we
gained insight into how to improve the performance and functionality of process
groups.

2.1 The Deceit File System

Our first example of a practical fault-tolerant distributed application is the Deceit
file system [14]. Deceit is an NFS-compatible file system that replicates its files
across a collection of servers. The system provides flexible support for fault-
tolerance. A set of parameters attached to each file controls its replication level
and update semantics. As the system is used, file replicas migrate to form working
sets on the servers that are currently receiving requests. Deceit's file system
therefore exists as a whole across all of the servers yet no one server need contain
the whole file system. A key aspect of Deceit is its ability to maintain one-copy
serializability in the event of server failures and distributed requests and updates.
To manage the inherent complexity of achieving such a property, Deceit uses an
ISIS process group to represent the replicas of a file; each member of the group
actively maintains a replica of the file. This set of servers changes dynamically as
replicas migrate and as servers crash and recover.

Logically, an update to a file need only be multicast to the collection of servers
maintaining replicas of that file using the ISIS process group as the transport
mechanism. The initial design of this system was built in the obvious way; a
single process group was associated with each file's set of replicas. It became quite jr
apparent however that this was not the correct approach for using ISIS process
groups; the system suffered greatly from performance problems. Too many process
groups that were created (one for each file in the file system) and the algorithms
that provide the ordering semantics of group communication were greatly affected

DTIC QUALITY INTCTED 5

Dist :.AOr

2 TRENDS IN THE USE OF PROCESS GROUPS 4

by this (we will discuss this later).
A few observations about the collection of process groups lead us to the design

decisions that contribute to the good performance of today's Deceit and to the
foundation of light-weight process groups. First, good fault-tolerance was obtained
with a relatively small collection of file servers. Three to five servers provide good
availability, reliability, and performance. Second, even though many (thousands
of) process groups were desired, the number of unique process groups, in terms
of their membership, was quite small. By using a single process group for the
collection of files that had the same replica set, the number of process groups was
dramatically reduced with a corresponding improvement in performance. In this
new design, when replicas migrated they needed to change process groups, by
orchestrating the change through a coordinator in the group. Deceit was able to
use the inexpensive CBCAST protocol [6] while maintaining the consistency of
the file's replicas.

2.2 The ISIS Transaction Tool

The ISIS Toolkit includes a tool for distributed transactions [9]. A transaction is
represented by a process group comprising all the servers which have an interest in
the outcome of the transaction (the participants). The implementation of the tool
in ISIS is very straightforward. Reliable group multicast is used to implement the
commit protocol, and group monitoring facilities are used to detect the failure of
transaction participants and to trigger a transaction abort. To ensure that the state
of a transaction persists even when all participants fail, transaction state is logged
to disk, and transaction outcomes are logged to the transaction recovery manager,
itself implemented by a process group.

While the semantics of ISIS process groups and reliable multicast greatly
simplified the implementation of the transaction tool, performance was poor. The
transaction tool needed only anonymous groups, but ISIS required every group to
have a name. The transaction tool generates a known-to-be-unique name derived
from the transaction identifier. ISIS incurs unnecessary costs verifying the name's
uniqueness by multicasting to the ISIS servers on the network when the group
is created, and searching for the name during subsequent join operations. This
deficiency is fixed in HORUS, which directly supports anonymous groups and
leaves naming to an external service.

More serious than group naming was the cost of a group join. The critical
path of a transaction included one group join for every participant and a single
group deletion at transaction end. A join involves synchronizing all the current
members of the group, and possibly the authentication of the new member. One

3 ANALYSIS OF PERFORMANCE PROBLEMS 5

common scenario in the use of the transaction tool is for a client to issue a series
of transactions to the same set of servers. After each transaction the group is torn
down only to be built again by the following transaction. This creates unnecessary
work when the group transport could be saved.

2.3 META

META [18, 10] is a system for distributed management. It provides a mechanism
for instrumenting programs with sensors and actuators and allows creating sophis-
ticated reactive control systems in a distributed network. META makes use of ISIS
for its group communication and fault-tolerance. Process groups in META are used
both to maintain aggregates and as a convenient naming mechanism. Aggregates
are used to represent a collection of machines that satisfy some property (e.g.,
a set of machines with a light load). This collection is maintained (determined)
by a set of replicas which detect changes in the aggregate set. An ISIS process
group is used to manage this replica set. Aggregates are a fundamental piece of
META and are intended for heavy use by META applications, and consequently,
META shows similar characteristics to Deceit: a relatively small set of replicas
can be responsible for a large number of coincident process groups. Like the initial
design of Deceit, the failure of a replica can trigger a flood of distributed agreement
protocol invocations.

3 Analysis of Performance Problems

In general we have found that good performance can be obtained from group
communication in ISIS provided that the programmer has solid knowledge of the
protocol semantics and knows the details of the implementation well enough to
make optimizations. Each of the authors in the above systems are sophisticated
ISIS programmers that took the semantics of the ISIS communication system and
knowledge of the internal protocols into account when designing their software. In
general one cannot expect typical applications programmers to be (or want to be!)
as knowledgeable about ISIS as these authors. This has motivated us to consider
light-weight process groups as a necessary piece of the HORUS system. LWGs
should allow applications programmers to use the process group paradigm in a
manner which fits the logical structure of their application and which yields good
performance.

We now look at why the original process group mechanism in ISIS performed
poorly for these applications. The performance problems are mainly a result of the

3 ANALYSIS OF PERFORMANCE PROBLEMS 6

process group algorithms being too closely coupled with the interface provided to
the applications builder. Three major performance problems illustrate this point.

3.1 Failure detection

ISIS provides a strong guarantee of consistency for group membership changes. A
group's membership history can be characterized by a total order on the join and
leave/failure events of the group. Each group member observes the membership
in an order consistent with this history. In addition, ISIS provides the strong
guarantee of failure atomicity; messages are delivered in the same view of the
group's membership at all correct and functional destinations 2. This allows the
recipients to make efficient local decisions about the global state of the system
without the need for extra communication. [13] and [6] present the semantics of
ISIS process groups and group communication.

Figure 1 shows an example of communication with and without failure atom-
icity. Failure atomicity and serialized membership greatly impact the performance
of process groups when failures occur. Consider the fault-tolerant NFS file server
described above if it made a naive use of process groups (by creating one process
group per file). At some point during the normal operation there might be a thou-
sand or more process groups representing the files actively in use that are being
maintained on three servers. If one of these servers should fail, the ISIS group
membership and atomicity protocols would trigger for each of these one thousand
groups, forcing failure atomicity on the outstanding messages, delivering them in
consistent views across their recipients. Each of these instantiations would force an
expensive flush of the group's communication. Unfortunately this would have the
disastrous impact of flooding the network with protocol messages, which can lead
to congestion and the ultimate "failure" of other processes in the system, causing a
"domino" effect.

3.2 Overlapping Groups

ISIS provides strong causality guarantees for group communication. This guarantee
applies to communication that spans groups. This is an important property of the
ISIS system because it allows for less constrictive communication and allows
groups to be used flexibly. (6] discusses the ramifications of this property on the
algorithms that must implement it. Currently the ISIS system uses a conservative
protocol. In order to send a message m to a group G, G must be the only "active"

21n the case of partitions. this atomicity cannot be guaranteed, but the portioned processes winl
form their own consistent groups within which atomicity is respected.

3 ANALYSIS OF PERFORMANCE PROBLEMS 7

group. A group G' is active for a process p if there is some message m' to G'
that has been transmitted by p or delivered to p and which p considers unstable. A
process considers a message stable if it learns that the message has been received
at all of its destinations. If there is more than one group active for a process,
it must block the transmission of a message m until all other groups become
inactive (ie. until their messages become stable). This delay may requ;-e waiting
for acknowledgements from all members of a previous multicast, and potentially
for stability information from other groups. In Figure 2 (a), C must delay its
multicast to B and D until it learns that the causally preceding message from A
has been stably received. This delay is denoted by the arc. An application that
continuously alternates communication between two groups by sending messages
asynchronously, will in fact see no advantage to the asynchronous call, since each
communication context switch will essentially force synchrony on the previous
message send.

3.3 Named groups

Previous implementations of ISIS have incorporated the naming service into the
same server process that manages the group membership protocols. This process,
historically known as protos (for protocol server), resides on every ISIS site. (For
scaling reasons ISIS V3.0 allows for remote connections that are less fault-tolerant
and do not run the protocol server directly but instead connect to a "mother" ISIS
site.) The implementation of the name service ensures one-copy consistency of the
name space mappings among all of the protos processes. This has a great impact
on the cost of creating a named group as indicated in the transaction tool discussion
above.

4 OVERALL DESIGN 8

4 Overall Design

The following observations about the common uses of process groups guided us in
our design to combat these problems. We have found that many applications use

"* many process groups.

"* heavily overlapping groups.

"* both small groups and large groups.

"* unnamed groups.

With the number of groups far exceeding the number of processes in the sys-
tem, high overlap and coincidence of groups is unavoidable. We observed that by
combining overlapping process groups so that they share a single "core" process
group, we could obtain several distinct advantages. A careful look at the per-
formance problems shown above revealed that for the common case of identical
overlapping groups, the protocols being exercised were largely unnecessary. Con-
sider the group membership protocol in the case of process failures: if a single
core process group were used instead of a thousand identical groups, only a single
flush would be necessary to ensure failure atomicity and instantiate the new group
view. Similarly, using only a few core groups can reduce transmission delays (for
obtaining stability) and thus increase truly asynchronous message sends. Much
of the state maintained by the ISIS transport system to maintain causality and
other ordering semantics can be shared by these light-weight groups, reducing the
resource requirements of the system.

Thus there is much to be gained by separating the protocols underlying the
process group implementation from the interface provided to the applications pro-
grammer. As was the solution in the above distributed systems examples, we
manage a large collection of light-weight process groups by mapping them onto
relatively small sets of "core" process groups. These core groups are the groups
provided by the VSync (for virtually synchronous) kernel in Figure 3.

Figure 3 shows the architecture of HORUS. A goal of HORUS is to take
advantage of the microkernel architectures being offered by modem operating
systems. Our experience with the ISIS system has allowed us to reorganize the
major components of the system in a layered and modular fashion, suitable for use
in microkernels. The lowest layer of HORUS called MUTS (MUlticast Transport
Service) [16, 17], provides a portable abstraction of the underlying operating system
to the higher layers. The operating system specific code is isolated in configuration

5 DESIGN ISSUES 9

dependent source files within MUTS. This foundation allows for easy porting of
the system to operating systems such as Mach [11, Chorus [4,51, and Amoebal 11].
A key component of MUTS is the abstraction it provides of a multicast transport
service. MUTS isolates the higher layers from the details of underlying transport
protocols, yet provides important feedback information to the higher layers so that
they may deal with communication failures in a consistent, well-defined manner.
Above MUTS, the VSync kernel provides ordering semantics on multicasts, and
provides the basic process group abstraction with strong semantics on the ordering
of group events with respect to multicasts. These two layers define the portion of
the architecture that is appropriate to put in the system space of an operating system.
While this is not necessary, it will likely yield more efficient communication. The
layers above this are most appropriately placed in a user space library. This is
where the light-weight process group subsystem lives. The subsystem provides an
interface to applications through this library and is used by the other tools within
the library itself. The library also contains tools for managing replicated data and
distributed computations.

5 Design Issues

In this section we examine a number of the issues which we faced during the design
of the LWG subsystem. We wanted a flexible, efficient, portable, and simple
interface to the subsystem. The interface had to allow for tight control of the
light-weight to core group mapping for use as a research tool and by sophisticated
users, yet also allow the subsystem itself to manage this mapping in an intelligent
way for ordinary users of the system. Efficiency was paramount; to be useful, the
system had to optimize the critical path. In the next few sections we discuss the
major issues in designing the LWG subsystem.

5.1 Mapping LWGs to core groups

To address the goals of flexibility and simplicity we introduced the notion of core
group sets which can be managed by the subsystem or the user. A core group
set is a collection of ISIS process groups which are used as the communication
transports for light-weight groups. Light-weight groups are allocated out of a core
group set and are always mapped to exactly one core group in the set. Influenced by
the Mach [1] philosophy of separating policy from mechanism we provide default
routines to manipulate these sets together with hooks in the interface where the
user can have tight control of the mapping between a light-weight group and its

5 DESIGN ISSUES 10

core group. The default policy manages core groups completely within the LWG
subsystem. In this case the subsystem creates, changes, and deletes core groups in
the set dynamically as the mapping needs of the LWGs change over time and uses
heuristics to define the mapping.

Core group sets allow us to address several issues at once. First, they provide
flexibility. By providing support for multiple sets, varying levels of mapping
control may be used within the same application. This allows different mapping
policies to be enforced for different types of objects. For example, one policy
might mandate that the membership of a light-weight group exactly match the
membership of its core group, while another might allow LWG members to be
a subset of the members of the core group. These policies will have different
impacts on the performance of the system. Second, by providing policies for
self-management together with a default core set, the system provides much of the
functionality of light-weight groups with a simple interface. Third, by constraining
LWGs to map only to those core groups within their core group set, we improve
the efficiency of self-management policies by reducing the search space for core
groups.

In Figure 4 we show a mapping of 3 different light-weight groups onto a
common core group. It i important to note that the membership of the core
group need not match the membership of the light-weight group exactly; it can be
larger. However, there are tradeoffs with such mappings. If hardware multicast is
not available, the cost of sending a multicast message may be greater due to the
increased number of recipients. In Figure 2 (b) we see that processes A and D
receive extra messages which the light-weight group subsystem will need to filter
out. However, these extra messages must be weighed against the acknowledgement
and stability information messages sent in diagram 2(a). If hardware multicast is
in use, the extra members do not add to the cost of sending a message, but the extra
members themselves still pay a cost for handling the receipt of the message. On the
other hand, supporting "subset mappin&S" yields a number of advantages. First, the
number of core groups that are needed is reduced since they can encompass more
light-weight groups. This reduces the amount of state that is needed to support
causality, reduces the number of communication context switches that occur, and
reduces the size of the space that must be searched when creating a new mapping
for a LWG. Second, with fewer core groups, better use can be made of hardware
multicast addresses. This can be a critical performance factor since hardware
devices such as Ethernet interfaces support a fairly limited number of multicast
addresses before they go into "software" mode. Third, the cost of adding a member
already in the core group to the LWG is cheaper since much of the state of the
member has already been set up by the core group.

5 DESIGN ISSUES 11

Over time core groups will have a number of different LWGs mapped to them
and at some point a core group may have no LWGs that map to it. To avoid
consuming too much memory, such core groups have to be garbage collected
periodically. This collection could occur at the instant the set of mapped LWGs
becomes empty, but leaving the core group around for some grace period can be
advantageous in the event that a subsequent LWG mapping appears soon. In the
transaction tool this does well on the common scenario where a client issues a
series of transactions to the same set of servers, when the grace period is longer
than the time between transactions. Thus we could exploit temporal, as well as
spatial, locality of transactions.

Under high load the LWG subsystem can be faced with a potentially large
search problem. Upon the creation of a LWG with an initial set of members, it
must map this group tc an existing core group, if possible. Determining the best
mapping can, without using good search techniques, lead to a linear search of the
core group set, which in the worst case can be quite expensive (for n processes,
there are potentially 2' - I unique core groups). In practice such a large number
of core groups never exists since the presence of subset mappings eliminates the
need for many of these groups. In any case, the default mapping policy of the
LWG subsystem manages this search by using a hash index scheme keyed on the
membership of the group. This enables the search to quickly narrow in on a core
group containing the right members. The policy of this default is to map an LVG
1 to the smallest core group G whose membership contains the processes in 1. A
further constraint is that the number of extra members in G must not exceed some
threshhold k (a parameter of the heuristic). If no such group is found, a new group
;s --.. ýted with the membership of 1. Our performance measurements used this
heuristic with k set to MIN(5, Ill * 2) where IlI is the number of members in 1, and
show that even this simple approach works well. We are currently experimenting
with other heuristics.

5.2 Added Functionality

Rewriting ISIS gives us the opportunity to consider providing different forms
of group semantics. ISIS provides a broad range of ordering semantics for its
communication (MBCAST, FBCAST, CBCAST, ABCAST, and GBCAST)[9],
yet only one set of semantics is provided for the process group mechanism. While
it can rightfully be argued that too many choices only leads to the confusion of the
programmer, it is nonetheless interesting to consider the use of this subsystem as
tool for research into a spectrum of process group semantics. An example clearly
establishes the validity of this argument. We have observed that while many

6 INTERFACE 12

applications benefit greatly from the strong semantics c" ISIS process groups,
there are nonetheless a number of applications for which these semantics are too
strong and which would benefit from the performance improvements obtained by
using weaker semantics. Consider a collection of sensor processes responsible for
periodically sensing the temperature of a room and reporting on these values to a
collection of reader processes. For fault-tolerance multiple sensors are used, and
the reader processes collect the sensor data to determine an average for the room's
temperature. Here an ISIS process group may be used as the group communication
transport. The sensor processes would, on initialization, join the group and start
broadcasting data. Notice, however, that the sensors themselves use the group
for sending only; they do not need to obtain state from other members and are
not concerned about the order in which they join the group. In this situation ISIS
would completely order the joins when in fact this is not needed.

5.3 Large numbers of process groups

Just as light-weight threads share their state within the address space of their
eucompassing process, light-weight groups share their causality context and group
data structures within their core group. The reduced memory resource needs
combined with the sharing of the core group protocols for failure detection and
causality allow HORUS to efficiently support many more light-weight process
groups than core groups.

6 Interface

Table I shows the interface to the light-weight group subsystem. This interface pro-
vides asynchronous results to enabl- the application to take advantage of pipelining
to improve its efficiency and yet retain a simple model of execution.

7 Initial Performance Results

As a proof of concept, we built a prototype of the light-weight group subsystem
on top of ISIS V3.0.6. Doing so allowed us to proceed with our research testing
in parallel with the building of the HORUS system, which is being built bottom
up. The lnwest layers of HORUS are almost now complete and the building of the
light-weight group subsystem on top of HORUS is just beginning. Building the
prototype on top of ISIS V3.0.6 allows us to make measurements of the impact
of the LWG subsystem on the performance of the system. Happily, the prototype

7 INITIAL PERFORMANCE RESULTS 13

Function Arguments Result Description

lwg.create initial members lwg Create light-weight group.
lwg.add members - Add members to a group.
lwg-remove members - Remove members.
lwg-destroy lwg - Destroy group.
lwg.send lwg, msg sendad Post message to a group.
lwgjreceive lwg msg, recv.id Wait for next message.
lwg-reply recv-id, reply msg - Send a reply.
lwgget.nextreply send.id msg Wait for next reply.
lwg-discard-replies sendid - No more replies wanted.

Table 1: The light-weight group interface.

showed significant improvements in performance and the results supported our
initial suspicions.

Initial measurements of the performance of our light-weight process group
subsystem are encouraging. The following measurements were taken on Sun
4c/60 Sparc 1+ workstations running Sun OS 4.1.1 using ISIS V3.0.6.

Our measurements of the cost of obtaining message stability confirmed our
initial expectations. Switching communication from one core group to another
core group costs the application approximately one synchronous multicast. For
applications that change contexts frequently with respect to message sends, this
overhead can be significant. For example, a process that repeatedly switches
between to coincident core groups runs roughly twice as long as the equivalent
program sending to only one core group. Asynchronously CBCASTing 400 byte
messages to 4 members (3 remote, 1 local) costs 18.0 ms per multicast in the
strictly alternating case, and only 10.4 ms in the single group streaming case. For
2 members (1 remote, 1 local), the cost of alternating CBCASTs is 10 ms, for
streaming it is 3.2 ms. The tuning of the transport layer plays an important factor
in the cost of obtaining stability. For efficiency the transport layer will attempt to
determine if the sending application is in a streaming or "interactive" mode. In the
former, the transport layer will delay acknowledgements in order to send as few
ack messages as possible, in the latter case the transport layer is aggressive about
sending acks, so that the cost of the context switch is as small as possible.

To measure the effect of light-weight groups on reducing the costs of a join,
we compared creating bursts of 100 LWGs vs. core groups. The prototype LWG

8 RELATED WORK 14

subsystem makes use of a group view manager which replaces the role of "protos"
for managing views and group names. We ran these tests with the creating process
both local and remote to the view manager. In the local case, a LWG create took 45
ms compared to 60 ms. In the remote case, a LWG create took 29 ms compared to
200 ms for the core group. Contention for the processor may partially explain why
the LWG create with the local view manager is more expensive than the remote
case, but this is still curious. These results are preliminary and only serve as proof
of concept. The LWG subsystem on HORUS will not use a group view manager
and will use a separate name service for named groups.

We measured the time of a light-weight group leave event for both the local
and remote view manager cases. Under both situations the cost of a light-weight
group leave was 9 ms. The cost of a core group leave for the remote case was 197
ms, and for the local leave it was 80 ms.

8 Related Work

The Transis system [3, 2] provides process sets at the session layer of their system.
These are closely related to the multiplexing layer of HORUS. Their job is to map a
process abstraction of membership onto a site abstraction of membership. Transis
has a single "Lansis" process on each processor which coordinates the current
configuration set (CCS), the set of currently active processors. In contrast with
ISIS and Horus, Transis has a single CCS within a broadcast domain (typically a
LAN). All of the processors within this CCS receive all messages sent within any
process set in that CCS. Transis uses local broadcasts to reduce the impact of this,
but this can have an adverse affect on active processors that are not interested in
participating in the broadcast domain.

The ESPRIT Delta-4 project [12] also provides a similar light-weight notion of
process groups. They provide a sub-grouping mechanism in their extended atomic
multicast protocol service (xAMp). This yields support for multiple selective
address lists which share the context of a gate group. In many respects these are
similar to process lists in ISIS [9]. Both of these mechanisms however require the
user to determine the mapping between the address list and the group. Once defined
this association is permanent The address lists are purely local to the creating
process, indeed the members may not even be aware of their membership in a
list. These are significant differences between the light-weight group mechanism
reported here and process lists.

The Delta-4 project has also recognized the importance of providing different
qualities of service within their group communication service. This recognition

9 CONCLUSION 15

lead in part to the evolution of the Delta-4 AMp service to xAMp. Our observation
of this need has been similar in the ISIS system.

9 Conclusion

It is interesting to draw analogies with the evolution of some other common
system paradigms. Memory allocation is an excellent example. Before the advent
of standard library routines like malloc, programmers were forced to implement
their own memory allocator routines which usually had the effect of reducing
the portability of their software, since their memory allocators were often OS and
machine specific. Today, malloc is widely available, and the mechanisms by which
memory is allocated are hardly a concern to most programmers. Much like malloc,
light-weight process groups abstract away the details of the implementation, yet
provide added functionality and improved performance.

Similarly, threads have become an attractive mechanism for improving the
performance of processes. Threads reduce the heavy-weight context switching of
processes by sharing an address space among the threads of control. The sharing of
resources seems to be a common theme to providing light-weight mechanisms. We
are encouraged by the initial results of our prototype and are actively incorporating
these ideas into HORUS.

Currently, we are actively experimenting with prototype and are building the
light-weight process subsystem and user-level libraries on top of the VSync kernel
in HORUS. We hope to have a release of this system available by the end of 1993.

10 Acknowledgements

The authors of this paper gratefully acknowledge the contributions of Sue Honig,
Keith Marzullo, Aleta Ricciardi, Alex Siegel, Patrick Stephenson, and Mark Wood
to ISIS and its applications. We also greatly appreciate the helpful comments of
Cliff Krumvieda and Mike Reiter on an earlier draft of this paper.

References

[1) Mike Accetta, Robert Baron, David Golub, Richard Rashid, Avadis Tevanian,
and Michael Young. Mach: A new kernel foundation for UNIX development.
In Proceedings of the USENIX Summer '86 Conference, pages 93 - 112,
Atlanta, GA, June 1986.

REFERENCES 16

[2] Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Membership
algorithms in broadcast domains. Technical Report CS92-10, The Hebrew
University of Jerusalem, June 1992.

[3] Yair Amir, Danny Dolev, Shlomo Kramer, and Dalia Malki. Transis: A com-
munication sub-system for high availability. In Proceedings of the Twenty-
Second International Symposium on Fault-Tolerant Computing, pages 76-84,
Boston, Massachusetts, July 1992. institution of Electrical and Electronic En-
gineers.

[4] Francois Armand, Michel Gien, Fr~ddric Herrmann, and Marc Rozier. Rev-
olution 89 or "Distributing UNIX Brings it Back to its Original Virtues".
Technical Report CS/TR-89-36.1, Chorus Systbmes, 6, avenue Gustave Eif-
fel, F-78182, Saint-Quentin-En-Yvelines, France, October 1989.

[5] Francois Armand, Frederic Herrmann, Jim Lipkis, and Marc Rozier. Multi-
threaded Processes in Chorus/MIX. Technical Report CS/TR-89-37.3, Chorus
Systbmes, 6, avenue Gustave Eiffel, F-78182, Saint-Quentin-En-Yvelines,
France, October 1989.

[6] Ken Birman, Andre Schiper, and Pat Stephenson. Lightweight causal and
atomic group multicast. Transactions on Computer Systems, pages 272-314,
August 1991.

[7] Kenneth P. Birman. The process group approach to reliable distributed com-
puting. Submitted to the Communications of the ACM.

[8] D. R. Cheriton and W. Z. Zwaenepoel. Thoth, a portable real-time operating
system. Communications of the Association for Computing Machinery, pages
105- 115, February 1979.

[9] The ISIS Group. The ISIS Distributed Toolkit Version 3.0 User Reference
Manual. Department of Computer Science, Cornell University, 3.0 edition,
May 1991.

[10] Keith Marzullo, Robert Cooper, Mark Wood, and Ken Birman. Tools for
distributed application management. Computer, 24(8):42-51, August 1991.

[11] S. J. Mullender and A. S. Tanenbaum. The design of a capability-based
operating system. The Computer Journal, 29(4):289-300, March 1986.

[12] D. Powell, editor. Delta-4: A Generic Architecture for Dependable Dis-
tributed Computing, volume 1. Springer-Verlag, 1991.

REFERENCES 17

[13] A. M. Ricciardi and K. P. Birman. Using Process Groups to Implement Failure
Detection in Asynchronous Environments. In Procedings of the Tenth Annual
ACM Symposium on Principles of Distributed Computing, pages 341-353.
ACM, August 19-21 1991.

[14] Alexander Siegel. Performance in Flexible Distributed File Systems. PhD
thesis, Cornell University, February 1992. PhD Thesis, 92-1266.

[15] Avadis Tevanian, Jr., Richard F. Rashid, David B. Golub, David L. Black,
Eric Cooper, and Michael W. Young. Mach threads and the Unix kernel:
The battle for control. Technical Report CMU-CS-87-149, Carnegie-Mellon
University, August 1987.

[16] Robbert van Renesse, Kenneth Birman, Robert Cooper, Bradford Glade, and
Patrick Stephenson. Reliable multicast between microkernels. In Proc. of the
USENIX workshop on Micro-Kernels and Other Kernel Architectures, pages
269-283, April 1992.

[17] Robbert van Renesse, Robert Cooper, Bradford Glade, and Patrick Stephen-
son. A RISC approach to process groups. In Proc. of the 5th ACM SIGOPS
Workshop. IRISA INRIA, September 1992.

[18] Mark Wood. Fault-Tolerant Management of Distributed Applications Using
the Reactive System Architecture. PhD thesis, Cornell University, December
1991. PhD Thesis 91-1252.

11 FIGURES 18

11 Figures

Figure captions:
Caption for figure 1.

Diagrams (a) and (b) show four processes, A-D, joined to a single process
group, denoted by the encompassing oval. C crashes around the same time that A
sends a message to the group. (a) shows multicast communication that does not
respect failure atomicity; B and D receive the message in different views of the
group. The multicast in (b) respects failure atomicity.

Caption for figure 2.

Diagram (a) shows two process groups (represented by ovals) and the mes-
sages sent by the system during when communication switches from group A,B,C
to group B,C,D. The solid arrows represent the application multicasts, the dashed
arrows represent low-level acknowledgements, and the dotted arrows represent
messages containing message stability information. Diagram (b) shows the mes-
sage traffic for the same pair of application multicasts, but with the two groups
merged into one. The arced arrows represent delayed messages, in (a) by the
sender, and in (b) by the receiver.

Caption for figure 3

The HORUS Architecture.

Caption for Figure 4

A mapping of three light-weight groups onto a common core group.

11 FIGURES 19

A B C D A B C D

Time

(a) Without Failure Atomicity (b) With Failure Atomicity

Figure 1:

I FIGURES 20

A B C D A B C D

(a) (b)

Figure 2:

I1 FGURES 21

User
N a m e A d d r e s s
Service ISIS Compatibility Libraries, Tools, Etc. Address

LWG Subste Space

Security VSync Kernel Kernel

MUTS Address

Operating System Space

Figure 3:

11 FIGURES 22

Light-weight Process Groups

A B C A C D B DE

Core Process Group

Figure 4:

